Formal Methods for the
Certification of Auto-generated

Flight Code

Ewen Denney
Robust Software Engineering
NASA Ames Research Center

California, USA

(®}

RIACS &

EE

gs In Space

* Mars Climate Orbiter (1998)

— Unit problem in GN&C software
— Crashed into Mars

« Mars Polar Lander (1998)

— Inconsistencies in GN&C
landing model

— Premature engine shut-off
— Crashed into Mars

» Mars Exploration Rover (2004)
— Spirit shut down unexpectedly for 10 days

— Flash ROM overload caused reboot

— Parameter permitted unlimited consumption of
system memory as flash memory was auste

— Lost $4M science a day RIACS --

USRA - RESEARCH INSTITUTE FOR ADVANCED COMPUTER SCIENCE

« Gemini 5 (1965)

— Missed landing point by
100 miles

— GN&C didn’t model
rotation of earth around
sun

* Apollo 11 (1969)

— Software reboot during
descent to lunar surface

— Forced manual landing
of lunar lander

(®}

ADVANCED OMPUTER SCIENCE

Cryosat (2005)

— ESA Earth Explorer Mission to
measure polar ice

i
Ariane 5 (1996)

_ Bad 64 to 16 bit — Launcher fell into ocean when
Soyuz TMA-1 (2003) conversiqn led to fuel ran out | |
_ Missed landing overflow in GN&C — Due to “software glitch™ in
ooint by 275 miles software control system: softwarnedfalled
_ “glitch in the craft's _ Ve_ered off to send_commagd for 2_ sta’\,ge
quidance software’ trajectory separation (Obut rocket is ok
— Self-destructed RIACS

USRA - RESEARCH INSTITUTE FOR ADVANCED COMPUTER SCIENCE

Cryosat (2005)

— ESA Earth Explorer Mission to
measure polar ice

Ariane 5 (1996)

_ Bad 64 to 16 bit — Launcher fell into ocean when
Soyuz TMA-1 (2003) conversion led to fuel ran out
_ Missed landin overflow in GN&C — Due to “software glitch” in
ooint by 275 rr?il es software control system: software failed
_ sglitch in the craf’s _ Veered off to send_commagd for 2f_‘OI sta’\,ge
g%idance software” trajectory separation (obut rocket is ok
— Self-destructed RIACS

USRA - RESEARCH INSTITUTE FOR ADVANCED COMPUTER SCIENCE

Ing worse ...

10M1
1700
In
_§ 430
& 160
5 100K
5 32
=
8
10K
: .
x|
Voyager Gallileo Cassimi MPE Shuuwle [SS
(1977) (1989) (1997) (1997) (2000) (2000 [est])

Software for International Space Station (ISS) now

estimated at 6.5 MLOC !

USRA - RESEARCH INSTITUTE FOR ADVANCED COMPUTER SCIENCE

Automated planning
— On-board decision-making

- Spacecraft operations

- System management

— Schedule generation
- Crew, equipment, systems

JJJJJJJJ

Real-Time Systems
Health Management

— Distributed sensing for
structural health

— Fault detection,

Informed Logistics

— Modeling of failure
mechanisms

— Prognostics ! .
_ Troubleshooting |sollat|on, anfj r.ecovery
assistance - Fa.u'lure'predlctlon and
— Maintenance mitigation
planning — Crew and operator
interfaces

— End-of-life decisions

USRA - RESEARCH INSTITUTE FOR ADVANCED COMPUTER SCIENCE

Adaptive Control

— Improving safety and
control performance
beyond human ability

— Control in situations of
failure or component
degradation

— Operability in unknown
or changing
environments

ion $ question

Given increasingly ... «....NOW can we develop

\uHI e ntll Ln; L Uu
_ complex systems software which is

— compressed schedules = reliab.le,
— safety-critical software, — sustainable, ana
— certifiable?

Software certification. demonstrating that software
meets its requirements and a given level of safety, either:

—through following a specified process (process-
oriented certification), or

— through providing evidence that the level of safety is
met (product-oriented certification) .
Riacs Usrh @

USRA - RESEARCH INS”

eC

Development

Earth Orbit OPS: GN&C SUBSYSTEM

Sensors

D,

Nav Sensors

Modeling:

rﬂofjets
le
’|Firefct1
Coastfct1
Firefct2
Coastfct2

>
Ptjcalct
by

ticalc
o

L

~

(1D

jets

Jet Control

>(2)

enable

ton

L

GUIDANCE/EXECUTIVE

.’
e

»
>

u

S

Cc

kalman_flt

V4

STATE ESTIMATION

In1

In2

inLowFlow
servol_ret

In5
currentRet_Scale
loopsOpen
OL_setPoint

In9

Outt

Control

Enable

Jet CTRL

Simulink (control), Stateflow (executive), Embedded Matlab (everywhere)

Code generation: Real-Time Workshop

USRA - RESEARCH INSTITUTE FOR ADVANCED COMPUTER SCIENCE

erators are not perfect

Dear ...,

If you are using R14SP3 Simulink code generation products, please review the following information. If you are
not using R14SP3 versions of MathWorks products, please disregard this message.

We have identified bugs in R14SP3 SimulinkA® code generation products, which in rare instances generate
incorrect code that is not easily detected. These bugs have been fixed in subsequent releases: R2006a,
R2006b, or the upcoming R2007a release.

To prevent impact from these bugs, R14SP3 code generation software users should take the following actions:
Review Related Bug Reports with Potential Workarounds

You can find the documented issues and potential workarounds through the following links (login required):
Bug Report 275411 <http://www.mathworks.com/support/bugreports/details.html?rp=275411>

Bug Report 283331 <http://www.mathworks.com/support/bugreports/details.html|?rp=283331>

Bug Report 284002 <http://www.mathworks.com/support/bugreports/details.html?rp=284002>

Bug Report 291423 <http://www.mathworks.com/support/bugreports/details.html|?rp=291423>
Bug Report 291978 <http://www.mathworks.com/support/bugreports/details.html|?rp=291978>

Frequent updates - bug reports, Work—arounds and fixes
USRA - RESEARCH INSTITUTE FOR ADVANCED COMPUTER SCIENCE /&AGS\ @

‘u

Qualification

* A code generator is qualified
— with respect to a given standard
— for a given project
iIf there is sufficient evidence about the
generator itself so that V&V need not be
carried out on the generated code to certify it
* Must be done for every project, version
— can obtain verification credit

* Generators are rarely qualified
— ASCET-SE (IEC 61508), SCADE, VAPS (DO-178B)

* Qualifying code generators is (almost)

infeasible! o
RIACS [iasa

USRA - RESEARCH INSTITUTE FOR ADVANGED COMPUTER SCIENCE

Commercial code generators are black
boxes
— Not qualified so need to analyze generated
code

* Historically buggy: despite extensive
heritage, rare bugs still remain

« Cannot detect many bugs at model level
or via simulation

« Math intensive code requires powerful
analysis techniques

(®}

RIACS &

USRA - RESEARCH INSTITUTE FOR ADVANGED COMPUTER SCIENCE

t-Oriented rtiftion

« Augment code generator to generate certificates
together with code (aka. the “verifying compiler”
approach)

* No need to qualify/re-qualify code generator

« Code certificates:
— proof of a specific safety property
— can be independently verified
— require only a small trusted infrastructure
— process is completely automated

« Support engineers doing software assurance
— generate safety documentation for human analysts

(®}

RIACS

USRA - RESEARCH INSTITUTE FOR ADVANGED COMPUTER SCIENCE

‘ategies for autocoding

Documentation
— explain the code synthesis and certification process
— Increases transparency and trust in process

« Traceability

— link elements of generation process
— mandated by NASA standards

* Proof
— mathematical proof is gold standard
— difficult to achieve and interpret without automation
— show incrementally for individual properties

Use code generator plug-in to automate this
= minimal impact to existing process

(®}

RIACS &

USRA - RESEARCH INSTITUTE FOR ADVANCED COMPUTER SCIENCE

nical approach

Simulink
model

adtv)

Safety
propertics

| "=

i = u-‘—ﬁ,-.-‘{f—_%w—-:

g

o

\

" Pattern
Library

Y

Real-Time
Workshop

\J

Annotation s
Library

Annotation
Inference

L

—

VCG

L4

L

Explanation
Generation

ATP

-

Y Certificate § <

N

A

\J‘\,._Jf "Vfll.ff

“~CERTIFIED=

E.xp!anmiOA

Certificate Browser

’-...\
/ '\" ,-’h‘\ .‘\'\’ -

USRA - RESEARCH INSTITUTE FOR ADVANCED COMPUTER SCIENCE

Combine generator with
certification plug-in:
AutoCert

Generate certificates
which can be verified

independently
(IV&V)

Based on formal logic

Range of safety
properties
Pattern-based approach
to inferring annotations
Fully automated

Can be used to generate
explanations

Small set of trusted
components

(®}

RIACS

"

| Ic safety properties

Language-specific safety properties to check specific constructs
of the target language (C)

 Memory safety: array bounds
— Buffer overflows often lead to unsafe programs

 Variable initialization before use

— Un-initialized variables can cause
unpredictable/unrepeatable effects

— Compilers only check for initialization of scalars
— e.g.: RTW Bug: uninit variables in DEMUX blocks

(®}

RIACS &

USRA - RESEARCH INSTITUTE FOR ADVANGED COMPUTER SCIENCE

Sific safety properties

* Invariants
e matrix symmetry: “covariance matrix P always symmetric”
e quaternion, probability vector norms: “must add up to 17
e coordinate systems, units: “must use consistently”
e arithmetic saturation/variable ranges: “actuator rate < 0.1”
« system-specific properties
 “are all sensor data used?”
* Dblock properties
« “all values of x in interpolation table disjoint and increasing”

Simulink control models often “‘math-heavy”

(®}

RIACS &

USRA - RESEARCH INSTITUTE FOR ADVANCED COMPUTER SCIENCE

annotated code

annotation

problem code
spec. generator

inference

rewrite
rules

« Small kernel of untrusted components

- patterns and annotations untrusted o

USRA - RESEARCH INSTITUTE FOR ADVANCED COMPUTER SCIENCE

X symmetry

Simulink: Embedded Matlab

. : :

Coyarlance matrices (PM, K=PM*H"*inv(R+H*PM*H')
PP) in a Kalman filter must —* Pp = -K*H)*PM*(I-K*H)' + K*R*K, >
remain symmetric during
update

P RTW

. :—:
e individual matrix operations - , ,
. for (eml_i0 = 0; eml_i0 < 2; eml_i0++) {
in the generated code must be for (eml_il = 0; eml_il <2; eml_il++) {

eml x11=0.0;
checked° for (eml_i2 = 0; eml_i2 < 2; eml_i2++) {
) eml_x11 +=eml_dvO[eml_i0 + (eml_i2 << 1)] *
) X=R+H*PM*H’ iS Symmetl‘ic ﬁ eml_dvl[eml_i2 + (eml_il << 1)];
}
° Annotations are required eml_x[eml_i0 + (eml_il << 1)] = eml_R[eml_i0 + (eml_il << 1)]
+eml_x11;
o Anal}’SIS tool automatic CN /* post forall eml_i0: int, eml_il: int
. O<=eml i0<2&0<=eml il<R2

generates annotations based > emlxfoml_i0 + (omL_il << 1)] = eml_xfomL_i1 + (omLi0 <<)]

upon 1diomatic code patterns ’

(®}

USRA - RESEARCH INSTITUTE FOR ADVANCED COMPUTER SCIENCE

Vector norms

* Intuitively:
Vectors must be normalized

/*{ loopinv

pvi70 ==
f sum([pv7l := 0 .. pvE9 - 1],

« Show preservatio

gqrt (centeripvil, 0) - x(pvll) * center(pv7l, 0) - x(pvll)))

norm by update e/

for{ [pv59 := 0 .. n classes - 1])
1 70 4= £ t (pvk9, 0) - x(pvll) *

operations T T enter (pvsd, 0) - x(pvi1));

/*{ post
[L] L] pV?O e
* Domain-specific Sim(Tpv71 = 0 .. n classes - 11,

gqrt (center (pv71l, 0) - x(pvll) * center(pv7l, 0) - x(pvll)))

requirement

grt (center (pvl3, 0) - x(pvll) *
center (pvl3, 0) - x(pvlil)) / pv70;

* Requires code /o] post
annotations | > sum([pvld := 0 .. n classes - 1], glpvll, pvld)) == 1

(%]

USRA - RESEARCH INSTITUTE FOR ADVANCED COMPUTER SCIENCE)

raceability

* Traceabillity:

“the abillity to link requirements back to
rationales and forward to corresponding
design artifacts, code, and test cases”

USRA - RESEARCH INSTITUTE FOR ADVANCED COMPUTER SCIENCE

- raceability

* Traceabillity:

“the abillity to link requirements back to
rationales and forward to corresponding
design artifacts, code, and proofs”

* “why is this line of code safe?”
line of code — verification conditions

e “where does this condition come from?”
verification condition — lines of code

(®}

RIACS &

USRA - RESEARCH INSTITUTE FOR ADVANGED COMPUTER SCIENCE

Verification says that the code is safe
« Explanation says why the code is safe
« Use code analysis to generate safety report: explain how code

complies with safety properties

“the variable rtb GetVeci is in the coordinate frame Earth-Centric Inertial because it is
deflned by applying the ECEF to ECI transformation to the variable ... which is in
turn..

= support code reviews
« Trace to relevant code fragments and model

-~ AutoFilter Certification Browser: quaternion_ds1 - Mozilla {Build ID: 2002040813}

init-certification of quaternion_ds1(IMU + SRU: nonlinear w/ quaternions) @ P ro of

4. ¥ “““feg?;‘ 35} init_0024 [Verification Conditions

* (xhatmln dsl_filter(3, 0L =

i Status
215 2) =t

216 Say i=t [For L220]

217 phi_ds1’ (0, 2) =t

218: phi_dsl_filter(0, 1) :=t

}

else

Y7 Update 1oop ---. d

223: gain_dsl_filter := pminus_dsl_filter *
(trans (h_ ds filter) =
v

filter * trans(h_dsl_filter))));

224: xhatl_dsl_filter := xhatmi
zpred_dsi_filter);

225: pplus_dsl_filter := (_ds1_Ffilter * h_dsl_filter) *
226: xhatmin_dsl_filter :=

p * xhatl_dsl_filter; "
227: pminus_dsl_filter := q_ dsl f

P eEy e x n I n

| dsl_filter * trans(phi_dsl_filter));
Ve Populate Output Vect
228: for([pv39 := 0 st s
229: xhat_ds1_fi 1ter(pv39 :
) =l

11
) := xhatl_dsl_filter(pv39, 0); S f t OI I L] t-
nion_ds1_initlang.php7L60=1&L97=1&L104=1&L141=1&L151=1&L158=1&L185=1&L205=1&L212=" 1&L213'¥2ﬂ 1&L221=1 g -(Q o

36 £l \Z E3 &3 | hitpilocalhost~fisc

USRA - RESEARCH INSTIT FOR ADVANCED COMPUTER SCIENCE

Auto-generated code

ummary

 Formal basis
— Safety requirements in first-order logic
— Semantics in VCG
— Prove VCs with ATP

* Tool
— Tight integration with development tool suite
— Trace code and model to verification artifacts
— Trusted architecture

« Usage
— Incremental approach
— Generates safety documentation
— Supports mdependent V&V

(%) i ;
USRA - RESEARCH INSTITUTE FOR ADVANCED COMPUTER SCIENCE ’) .

